
Abstract Understanding the genetic architecture of
quantitative traits can greatly assist the design of strate-
gies for their manipulation in plant-breeding programs.
For a number of traits, genetic variation can be the result
of segregation of a few major genes and many polygenes
(minor genes). The joint segregation analysis (JSA) is a
maximum-likelihood approach for fitting segregation
models through the simultaneous use of phenotypic in-
formation from multiple generations. Our objective in
this paper was to use computer simulation to quantify the
power of the JSA method for testing the mixed-inherit-
ance model for quantitative traits when it was applied to
the six basic generations: both parents (P1 and P2), F1,
F2, and both backcross generations (B1 and B2) derived
from crossing the F1 to each parent. A total of 1968 ge-
netic model-experiment scenarios were considered in the
simulation study to quantify the power of the method.
Factors that interacted to influence the power of the JSA
method to correctly detect genetic models were: (1)
whether there were one or two major genes in combina-
tion with polygenes, (2) the heritability of the major
genes and polygenes, (3) the level of dispersion of the
major genes and polygenes between the two parents, and
(4) the number of individuals examined in each genera-
tion (population size). The greatest levels of power were
observed for the genetic models defined with simple in-

heritance; e.g., the power was greater than 90% for the
one major gene model, regardless of the population size
and major-gene heritability. Lower levels of power were
observed for the genetic models with complex inherit-
ance (major genes and polygenes), low heritability, small
population sizes and a large dispersion of favourable
genes among the two parents; e.g., the power was less
than 5% for the two major-gene model with a heritability
value of 0.3 and population sizes of 100 individuals. The
JSA methodology was then applied to a previously stud-
ied sorghum data-set to investigate the genetic control of
the putative drought resistance-trait osmotic adjustment
in three crosses. The previous study concluded that there
were two major genes segregating for osmotic adjust-
ment in the three crosses. Application of the JSA method
resulted in a change in the proposed genetic model. The
presence of the two major genes was confirmed with the
addition of an unspecified number of polygenes.
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Introduction

The genetic architecture of the traits possessed by organ-
isms has been the subject of investigation for over a cen-
tury (Kearsey and Farquhar 1998). For the majority of
this period investigations relied predominantly on the
use of quantitative methodologies for partitioning pheno-
typic variation in terms of hypothesised genetic models.
Advances over the last two decades have expanded our
capacity to measure and characterise genetic variation at
the DNA level. This has enabled these investigations of
trait architecture to be conducted at both genetic and
phenotypic levels. However, determining the pathways
from gene to phenotype remains a significant challenge
for most quantitative traits. An important component of
the analysis of gene to phenotype relationships will be
the refinement of the quantitative genetic models that are
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used to analyse phenotypic variation. These refinements
will need to incorporate those properties of gene effects
discovered at the genomic level that influence the pheno-
types of individuals and the phenotypic variation ob-
served in populations.

Many of the important traits manipulated in plant-
breeding programs are quantitative in nature. Recent evi-
dence from QTL (quantitative trait locus) mapping stud-
ies suggests that the genetic effects of QTLs can differ
greatly from each other (Paterson 1998; Kearsey and
Farquhar 1998). If we extend these observations to the
gene level there may be one or a few genes contributing
large effects to the phenotype, which are often referred
to as major genes. As well as major genes, many minor
genes, referred to as polygenes, can also influence traits.
The distributions of the estimates of the QTLs detected
in mapping studies are typically continuous, rather than
discretely or obviously separated into clear groups of
major and minor genes. Thus, it can be argued that,
based on the results of the QTL mapping studies con-
ducted to-date, any definition of what is a major and mi-
nor gene is arbitrary and likely to be context specific.
This ambiguity is likely to persist as long as we have an
incomplete understanding of the gene to phenotype rela-
tionships and the biochemical pathways and physiologi-
cal processes influenced by the genes. Therefore, here
we consider the terms major and minor genes in a rela-
tive sense and restrict our considerations to genetic mod-
els where a major gene is a gene with a larger relative ef-
fect on the genotype and phenotype of an individual
within a specific cross or genetic background. This defi-
nition is at least consistent with the genetic models we
consider in this paper. For situations where major genes
are identifiable within a given germplasm pool it is ex-
pected that the major genes can be more easily manipu-
lated in breeding and more easily identified and charac-
terised by molecular genetic approaches than polygenes.
Equally, the polygene effects can complicate the identifi-
cation of major genes and hence make classical plant
breeding and genetic engineering processes more diffi-
cult.

The mixed major-gene and polygene inheritance mod-
el was first studied in human genetics and animal breed-
ing (Elston and Steward 1973; Elston 1984; Famula
1986; Hoeschele 1988; Knott et al. 1991; Janss et al.
1995). Recently, Wang (1996) and Gai and Wang (1998)
applied the mixed inheritance model to the genetic study
of plant quantitative traits. The four genetic models they
considered were: the one major-gene inheritance model,
the two major-gene inheritance model, the polygene in-
heritance model and the mixed one major-gene and poly-
gene inheritance model. This has been extended to 
include the mixed two major-gene and polygene in-
heritance model (Gai et al. 2001). The method for ana-
lyzing and testing the mixed-inheritance models is called
joint segregation analysis (JSA), which is a maximum-
likelihood approach using mixture distribution models
(McLachlan and Basford 1988). The JSA method has
been applied to study the inheritance of maturity, tofu

quality, cyst nematode resistance and foliar feeding in-
sect resistance in soybean, bacterial blight and wide
compatibility in rice, maturity in rapeseed and dwarf mo-
saic virus resistance in maize (Gai and Wang 1998;
Wang et al. 2000; Wang and Gai 2001).

One of the most-commonly asked questions for the
genetic analysis of a quantitative trait is “how large
should the experimental population size be?” Answering
this question requires assessment of the power of the
methodology for a range of relevant genetic models
(Beavis 1998). To-date there has been no investigation of
the power of the JSA methodology for testing mixed-
inheritance analysis models. The objective of this study
was to use computer simulation to conduct a power anal-
ysis of the JSA method for a range of mixed-inheritance
models of interest in plant genetics. The properties of the
genetic models considered were the number of major
genes and polygenes, the heritability values for both the
major genes and polygenes, the degree of gene disper-
sion between the parents, and the population size of 
the generations included in the experiment. From this
study, recommendations on a suitable population size for 
testing specific genetic models can be given from the
power analysis. This information is used to re-interpret a
previously published genetic analysis of the inheritance
of osmotic adjustment in three grain sorghum crosses
(Basnayake et al. 1995).

Materials and methods

The power of the joint segregation analysis (JSA) method was in-
vestigated using computer-simulation methodology. A simulation
experiment was conducted using the QU-GENE (QUantitative-
GENEtics) simulation software (Podlich and Cooper 1998). 
QU-GENE was used to define different types of genetic models
and generate populations of individuals for appropriate genera-
tions. For the purposes of this study, the power of the JSA method
was considered for the six basic generations, which included the
two homogeneous parents (P1 and P2), the F1 cross between the
parents, the F2 generation produced by self-pollination of the F1,
and the two backcross generations (B1 and B2) developed by
crossing the F1 to each of the parents. Using the phenotypic infor-
mation from these generations, the JSA was used to predict the
underlying genetic model. The power of the JSA method was
evaluated by assessing its ability to select the correct underlying
genetic model. The background to the JSA method and the 
QU-GENE simulation software is given, followed by a detailed
description of the parameters used in the simulation experiment.

Joint segregation analysis (JSA) and JSA software

The principle of the JSA is described as follows. Firstly, it is as-
sumed that trait variation in each segregating population is due to
the variation in the distribution of major genes modified by poly-
genes and the environment (see Appendix 1 for more detail). Sec-
ondly, the major gene heritability and polygene heritability are de-
fined, and standard curves of the mixture distributions under vari-
ous genetic conditions are drawn. Thus, comparing practical fre-
quency distributions with the standard curves we can approximate
the inheritance model of a quantitative trait. This process is called
graphical analysis (Wang 1996; Wang and Gai 2001). Thirdly,
likelihood functions under various possible genetic models are es-
tablished, maximum-likelihood estimates of parameters contained
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in each model are calculated through the EM algorithm (Dempster
et al. 1977; McLachlan and Basford 1988), and the best-fitting ge-
netic model and its parameter estimates are chosen by Akaike’s
Information Criterion (AIC) (Akaike 1977), likelihood-ratio test
and tests of goodness of fit. From Akaike’s Information Criterion,
the model with the least AIC value is chosen as the best-fitting
model. Here, AIC=−2Lc(Φ)+2N, where Lc(Φ) is the maximized
log-likelihood and N is the number of independent parameters in
the model. Finally, each individual in the segregating generations
is classified into a suitable component distribution using Bayesian
posterior probabilities.

Software implementing the JSA method was used in the simu-
lation experiment. The JSA software calculated the maximum-
likelihood estimates for a set of parameters (see Appendix 1 for an
example) and the AIC value for each genetic model. The model
with the lowest AIC value was selected as the best-fitting genetic
model for a given set of phenotypic data. 

QU-GENE simulation software

To conduct a power analysis of the JSA method it was necessary
to generate phenotypic information of individuals in segregating
populations. This was achieved through the use of the GEXP (Ge-
netic EXPeriments) module available within the QU-GENE simu-

lation platform. The QU-GENE software comprises a two-stage
architecture (Podlich and Cooper 1998). The first stage is the en-
gine, which is used to specify the properties of the genetic models
under investigation. The properties of the genetic models that can
be manipulated in the engine include the number of genes influ-
encing a trait, the action and magnitude of genetic effects of indi-
vidual genes influencing a trait, and the heritability of a trait. The
second stage of the QU-GENE software consists of a series of
modules that are used to conduct the simulation experiments, us-
ing as inputs the properties of the genetic models from the engine.
The GEXP module conducts a range of genetic experiments that
can be used to study the inheritance of traits. For the current study,
the generation means analysis (GMA) option within GEXP was
used to create the six basic generations, i.e., both parents (P1 and
P2), F1, backcrosses (B1 and B2) and F2. For the purposes of this
study it was assumed that the parents were completely inbred.

Genetic models considered

A total of 82 genetic models were considered for the power analy-
sis (Table 1). The 82 genetic models were separated into six class-
es of inheritance. These were: (1) the null genetic model (NULL),
(2) the one major-gene inheritance model (1MG), (3) the two ma-
jor-gene inheritance model (2MG), (4) the polygene inheritance

Table 1 Genetic structure of
models for the power analysis.
See Appendix 2 for examples
on how the genetic models
were constructed. h2: heritabili-
ty; h2

mg: major-gene heritability;
h2

mg1: first major-gene heritabil-
ity; h2

mg2: second major-gene
heritability; h2

pg: polygene 
heritability; a1: additive effect
of the first major gene; 
a2: additive effect of the second
major gene; ai

10: additive effect
of individual polygenes for 
genetic models with ten poly-
genes; ai

30: additive effect of in-
dividual polygenes for genetic
models with 30 polygenes

Set Class of ge- h2 hmg
2 h2

mg1 h2
mg2 h2

pg a1 a2 ai
10 ai

30

netic model

1 1MG 0.9 0.9 0.9 0.0 0.0 1.10 0.00 0.00 0.00
2 2MG 0.9 0.9 0.8 0.1 0.0 1.03 0.37 0.00 0.00
3 2MG 0.9 0.9 0.7 0.2 0.0 0.97 0.52 0.00 0.00
4 2MG 0.9 0.9 0.6 0.3 0.0 0.89 0.63 0.00 0.00
5 2MG 0.9 0.9 0.5 0.4 0.0 0.82 0.73 0.00 0.00
6 MX1 0.9 0.7 0.7 0.0 0.2 0.97 0.00 0.20 0.12
7 MX2 0.9 0.7 0.6 0.1 0.2 0.89 0.37 0.20 0.12
8 MX2 0.9 0.7 0.5 0.2 0.2 0.82 0.52 0.20 0.12
9 MX2 0.9 0.7 0.4 0.3 0.2 0.73 0.63 0.20 0.12

10 MX1 0.9 0.5 0.5 0.0 0.4 0.82 0.00 0.28 0.16
11 MX2 0.9 0.5 0.4 0.1 0.4 0.73 0.37 0.28 0.16
12 MX2 0.9 0.5 0.3 0.2 0.4 0.63 0.52 0.28 0.16
13 MX1 0.9 0.3 0.3 0.0 0.6 0.63 0.00 0.35 0.20
14 MX2 0.9 0.3 0.2 0.1 0.6 0.52 0.37 0.35 0.20
15 MX1 0.9 0.1 0.1 0.0 0.8 0.37 0.00 0.40 0.23
16 PG 0.9 0.0 0.0 0.0 0.9 0.00 0.00 0.42 0.25
17 1MG 0.7 0.7 0.7 0.0 0.0 0.97 0.00 0.00 0.00
18 2MG 0.7 0.7 0.6 0.1 0.0 0.89 0.37 0.00 0.00
19 2MG 0.7 0.7 0.5 0.2 0.0 0.82 0.52 0.00 0.00
20 2MG 0.7 0.7 0.4 0.3 0.0 0.73 0.63 0.00 0.00
21 MX1 0.7 0.5 0.5 0.0 0.2 0.82 0.00 0.20 0.12
22 MX2 0.7 0.5 0.4 0.1 0.2 0.73 0.37 0.20 0.12
23 MX2 0.7 0.5 0.3 0.2 0.2 0.63 0.52 0.20 0.12
24 MX1 0.7 0.3 0.3 0.0 0.4 0.63 0.00 0.28 0.16
25 MX2 0.7 0.3 0.2 0.1 0.4 0.52 0.37 0.28 0.16
26 MX1 0.7 0.1 0.1 0.0 0.6 0.37 0.00 0.35 0.20
27 PG 0.7 0.0 0.0 0.0 0.7 0.00 0.00 0.37 0.22
28 1MG 0.5 0.5 0.5 0.0 0.0 0.82 0.00 0.00 0.00
29 2MG 0.5 0.5 0.4 0.1 0.0 0.73 0.37 0.00 0.00
30 2MG 0.5 0.5 0.3 0.2 0.0 0.63 0.52 0.00 0.00
31 MX1 0.5 0.3 0.3 0.0 0.2 0.63 0.00 0.20 0.12
32 MX2 0.5 0.3 0.2 0.1 0.2 0.52 0.37 0.20 0.12
33 MX1 0.5 0.1 0.1 0.0 0.4 0.37 0.00 0.28 0.16
34 PG 0.5 0.0 0.0 0.0 0.5 0.0 0.00 0.32 0.18
35 1MG 0.3 0.3 0.3 0.0 0.0 0.63 0.00 0.00 0.00
36 2MG 0.3 0.3 0.2 0.1 0.0 0.52 0.37 0.00 0.00
37 MX1 0.3 0.1 0.1 0.0 0.2 0.37 0.00 0.20 0.12
38 PG 0.3 0.0 0.0 0.0 0.3 0.0 0.00 0.25 0.14
39 1MG 0.1 0.1 0.1 0.0 0.0 0.37 0.00 0.00 0.00
40 PG 0.1 0.0 0.0 0.0 0.1 0.0 0.00 0.14 0.08
41 NULL 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.00
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model with no major genes (PG), (5) the mixed one-major gene
and polygene inheritance model (MX1), and (6) the mixed two-
major gene and polygene inheritance model (MX2). For each class
of genetic model, a number of heritability values were considered.
The heritability values were separated into major and polygene
heritabilities (discussed later), resulting in a total of 41 model-her-
itability combinations (referred to as Sets in Table 1). For each
Set, models with either 10 or 30 polygenes were considered. This
resulted in the 82 genetic models (41 Sets×2 polygene numbers)
considered for the power analysis (Table 1). Each of the genetic
models was defined in the engine of the QU-GENE software (see
Appendix 2 for examples on how the genetic models were con-
structed).

For each of the 82 genetic models, six scenarios with different
dispersions of genes (GD) between the two parents were consid-
ered; GD1: P1 has the two favourable major genes and all the fa-
vourable polygenes; GD2: P1 has the two favourable major genes
and 50% favourable polygenes; GD3: P1 has the two favourable
major genes but no favourable polygenes. For GD4, GD5 and
GD6, P1 has the first favourable major gene and different numbers
of the favourable polygenes to be the same as those in GD1, GD2
and GD3, respectively. For each genetic model, it was assumed
that all genes were unlinked and there were no epistatic effects.
The two major genes were defined to have complete dominance,
and the first major gene had a larger effect than the second. All
polygenes were defined to be additive, and contributed equally to
the phenotypic variation.

Partitioning of heritability values into major 
and polygene heritabilities

For a mixed-inheritance model, the phenotypic value (p) can be
expressed in terms of a linear model as the summation of the pop-
ulation mean (m), the major gene effect (g), the polygene effect (c)
and the environmental effect (e), i.e., p=m+g+c+e (Morton and
MacLean 1974), where g is different for different major-gene ge-
notypes, and c and e are normally distributed variables. The phe-
notypic variance (σ2

p) can be decomposed to consist of the major-
gene variance (σ2

mg), the polygene variance (σ2
pg) and the environ-

mental variance (σe
2). Therefore, we can define major-gene herita-

bility (h2
mg) and polygene heritability (h2

pg) as h2
mg=σ2

mg/σ2
p and

h2
pg=σ2

pg/σ2
p, respectively (Wang and Gai 2001). Because there are

two independent major genes, it is possible to further separate the
major-gene heritability as the first major-gene heritability (h2

mg1)
and the second major-gene heritability (h2

mg2). Here, the heritabili-
ty is defined in the broad sense, i.e., the ratio of the genetic varia-
tion on the phenotypic variation. For this study, the reference
population for the definition of heritability is taken to be the F2
generation.

When the first major-gene heritability, the second major-gene
heritability and the polygene heritability are all larger than zero,
the genetic model will be the mixed two major-gene and polygene
inheritance model (MX2). If the second major gene has a herita-
bility of zero, the model will be the mixed one major-gene and
polygene inheritance model (MX1). If both the major-gene herita-
bilities are zero, the model will be the polygene inheritance model
with no major genes (PG). If the polygene heritability is zero, the
model becomes the two major-gene inheritance model (2MG). If
the polygene heritability and the second (or the first) major-gene
heritability are zero, the model becomes the one major-gene inher-
itance model (1MG). Finally, if all three heritabilities are zero, the
model will be the null genetic model (NULL), i.e., there is no
gene(s) contributing to the phenotype.

The generations considered in this study were the six basic
generations commonly used in quantitative genetics, i.e., two ho-
mozygous parents (P1 and P2), F1, backcrosses (B1 and B2), and
F2. Without losing generality, we suppose σp

2=1 in the F2 genera-
tion. Hence, the major-gene and polygene heritabilities in the F2
generation can be represented as:

where a1, d1, a2, and d2 are the additive and dominance effects of
the two major genes, and V*A and V*D are the sums of the additive
and dominance variances of the individual polygenes (Kearsey
and Pooni 1996). By applying the above specifications, we have

where ai is the additive effect of the individual polygene which
has the same value for all polygenes in the simulation study, and di
is the dominant effect of the individual polygene which is zero for
all polygenes in the simulation study. Using the above equations,
the 82 genetic models summarised in Table 1 were constructed as
input files for use in the QU-GENE engine (see Appendix 2 for
examples).

Experimental factor: population size

In combination with the genetic models listed in Table 1, the pow-
er of the JSA method for different sizes of populations was exam-
ined. Four population sizes (PS) were considered: 30, 50, 100 and
200 individuals. To avoid the number of population-size combina-
tions getting too large, we considered the case where each genera-
tion has the same population size, even though the population siz-
es of the non-segregating generations P1, P2 and F1 would not have
much effect on the power.

Procedure for the power-analysis experiment

The procedure for conducting the power-analysis experiment was
as follows (Fig. 1).

(1) Create 82 QU-GENE input files for each genetic model summ-
arised in Table 1.

(2) Run the QU-GENE engine to generate 82 output files each
representing a reference population of genotypes for one of the
genetic models summarised in Table 1. The QU-GENE engine
output files provide the input for running the GEXP module.h a d h a d h V Vmg mg pg A D1

2
1
2

1
2

2
2

2
2

2
2 21

2
1
4

1
2

1
4

1
2

1
4= + = + = +, ,* *and

a d a d V a V dA i
i

D i
i

1 1 2 2
2 2 0= = = ∑ = ∑ =, , , ,* *and

Fig. 1 Flow chart of the procedures used to conduct the simula-
tion experiment and to estimate power
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(3) Run the GEXP module for parents specified to represent the
six gene dispersion (GD) scenarios to produce the six basic
generations (P1, P2, F1, F2, B1 and B2) with four different popu-
lation sizes. The phenotypic values for the individuals generat-
ed in each of the generations are outputs from the GEXP mod-
ule and represent the inputs for the JSA. 

(4) Run the JSA software for each of the sets of six generations
produced by GEXP and for each set select the genetic model
that best fits the simulated phenotypic data based on the diag-
nostics available from the JSA software.

(5) Run each case (82 models×4 population sizes×6 gene disper-
sion scenarios=1968 total model-experiment combinations)
100 times and count the number of times that each genetic
model was selected. The number of times that the correct mod-
el was selected out of the 100 runs was taken as a measure of
the power of the JSA method for that model-experiment com-
bination.

Example data set: osmotic adjustment

Osmotic adjustment has been identified as a physiological mech-
anism that contributes to improved adaptation to water stress 
(Morgan 1980; Ludlow and Muchow 1990). Osmotic adjustment
data obtained from a controlled environment experiment were
available for the six basic generations from three sorghum crosses
(Basnayake et al. 1995). Ten individuals were measured for each 
of the P1, P2 and F1 generations, and 30 individuals were measured
for the F2, B1 and B2 generations for each cross. The crosses 
were based on three inbred lines selected for high (Tx2813 
and TAM422) and low (QL27) levels of osmotic adjustment
(Basnayake et al. 1993, 1995). Basnayake et al. (1993, 1995) gave
a description of the experimental design, the methodology for
screening the plants in the controlled environment facility and tech-
niques for measuring osmotic adjustment. Previous analysis of
these data by mixture-model clustering methodology (McLachlan
and Basford 1988), which was applied separately to the three segre-
gating generations for each cross, resulted in identification of an in-
heritance model based on two major genes for high osmotic adjust-
ment. The JSA was applied to these data to evaluate the suitability
of the inheritance model proposed by Basnayake et al. (1995) when
information from the six generations was used simultaneously.

Results and discussion

Power: the NULL and 1MG models

For the NULL and 1MG models the effects of the poly-
genes were all zero (Table 1). Consequently, for these
cases the number of polygenes (GN) and their dispersion
(GD) between the parents did not affect the power of the
JSA to detect the 1MG and NULL models. Therefore,
the results of the six GD scenarios and the two GN sce-
narios were combined to estimate the power for these
two models. The power of the JSA to correctly select the
NULL model was always higher than 80%, and in-
creased with population size (Fig. 2a). The JSA consis-
tently had a power higher than 90% for the simplest ge-
netic model (1MG), regardless of the major-gene herita-
bility and the population size (Fig. 2a).

Power: the 2MG model

The JSA had a high power to correctly identify the 2MG
model for scenarios with a total major-gene heritability

of 0.9 and 0.7, when the major genes were not dispersed
between the parents (GD1, GD2 and GD3) (Fig. 2b). The
power exceeded 90% for the total major-gene heritability
of 0.9 and it exceeded 60% when the heritability de-
creased to 0.7. The power increased with population size
(Fig. 2b). The power was higher if the two major genes
made a similar contribution to the phenotype (e.g., cases
6_3 and 5_4, (Fig. 2b). For the total major-gene herita-
bility of 0.5 (e.g., cases 4_1 and 3_2, Fig. 2b), the power
when the population size was 30 and 50 was lower than
40%; however, for a population size of 100 and 200 the
power exceeded 60%. For the low heritability of 0.3
(e.g., case 2_1, Fig. 2b), the power to detect the 2MG
model was extremely low and did not exceed 40%, even
with a population size of 200. The distribution of the two
major genes between the parents had a large effect on
power (Fig. 2c). For example, for the major-gene herita-
bilities 0.8 and 0.1 (i.e., case 8_1), the power to detect
the 2MG model was greater than 90% (94%, 95%, 99%
and 100% for the four population sizes 30, 50, 100 and
200, respectively) for the case where the major genes
were not dispersed between the parents (Fig. 2b), but in-
creased in the order 33%, 48%, 76% and 95% for the
dispersed case as population size increased from 30 to
200 (Fig. 2c). Therefore, if the major genes are dispersed
between the parents, a large population size is required
to identify the correct genetic model.

Power: the PG model

There was no effect of the major genes for the PG models
considered (Table 1). Therefore, as expected, the gene
dispersion of the major genes did not have any effect on
power. Fig. 2d–f show the power for three polygene dis-
persion scenarios for models with 30 polygenes (GN30).
For gene dispersion scenarios GD1, GD3, GD4 and GD6,
there was no dispersion of the polygenes; hence, one of
the parents possessed all of the favourable polygenes. In
these cases the power was greater than 50% (Fig. 2d and
f). The power to correctly detect the PG model increased
with population size and with decreasing heritability. At
low heritability the distributions of the phenotypic values
for the populations were more continuous and therefore
more consistent with the PG model, making correct selec-
tion of the PG model easier. Where small population sizes
were combined with high heritability, the distributions of
phenotypic values were non-normal in some cases mak-
ing selection of the PG model more difficult. For scenari-
os where the polygenes were mostly dispersed (scenarios
GD2 and GD5), i.e., each parent had 50% of the favour-
able polygenes, the power to correctly detect the PG mod-
el decreased greatly, especially for small population sizes
and low heritability (Fig. 2e). For this case, the 1MG or
2MG models were frequently selected for the case of high
polygene heritability. However, the NULL model was se-
lected frequently for the case of low polygene heritability.
The number of polygenes (GN10 or GN30) did not have
much effect on the power to detect the PG model.
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Fig. 2a–f Power (measured as a %) of the joint segregation analy-
sis to correctly identify the NULL, 1MG, 2MG and PG models for
a range of major-gene (hmg

2  ) and polygene (hpg
2 ) heritability values,

and experiments based on four population sizes (PS) of 30, 50,
100 and 200 individuals per generation: (a) 1MG (hmg

2 = 0.9 to 0.1)
and NULL (hmg

2 = 0) models; (b) 2MG model for gene-dispersion
scenarios GD1, GD2 or GD3; (c) 2MG model for gene-dispersion
scenarios GD4, GD5 or GD6; (d) PG model for gene-dispersion
scenarios GD1 or GD4 and a polygene number of 30 (GN30); (e)
PG model for gene-dispersion scenarios GD2 or GD5 and a poly-
gene number of 30 (GN30); (f) PG model for gene-dispersion sce-
narios GD3 or GD6 and a polygene number of 30 (GN30). Labels
for the heritability values (horizontal axis) for the 2MG models
(b, c) are multiplied by ten

Power: the MX1 model

The change in polygene number (GN) from 10 to 30 did
not have a large effect on the power of the JSA to detect
the MX1 model (Fig. 3). The power exceeded 50% for
the major-gene heritability and polygene-heritability
combinations 0.7_0.2, 0.5_0.4 and 0.5_0.2 (cases 7_2,
5_4 and 5_2, respectively) for all the population sizes
considered, when the major gene and polygenes were not
dispersed between the parents (GD1 and GD4) (Fig. 3a
and d). When the major-gene heritability decreased, 
such as in the combinations 0.3_0.6 (case 3_6) (Set 13,
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Table 1), 0.1_0.8 (case 1_8) (Set 15, Table 1), 0.1_0.6
(case 1_6) (Set 26, Table 1) and 0.1_0.4 (case 1_4) (Set
33, Table 1), the effect of the individual polygenes is
near, or can exceed, that of the major gene. In these
cases it is difficult to identify the existence of a major
gene. Therefore, the PG model was mostly selected and
the power to select the specified MX1 model was very
low (Fig. 3a and d). The power to detect the MX1 model
did not exceed 50% for combined major-gene and poly-
gene heritability values of 0.5 and lower.

If the polygenes were dispersed and half of the poly-
genes were in P1 and the others in P2 (GD2 and GD5),

Fig. 3a–f Power (measured as a %) of the joint segregation analy-
sis to correctly identify the MX1 genetic models for a range of
major-gene (hmg

2 ) and polygene (hpg
2 ) heritability values, different

gene-dispersion (GD) scenarios, different polygene numbers
(GN10 or GN30) and experiments based on four population sizes
(PS) of 30, 50, 100 and 200 individuals per generation: (a) poly-
gene number GN10 and gene-dispersion scenarios GD1 or GD4;
(b) polygene number GN10 and gene-dispersion scenarios GD2 or
GD5; (c) polygene number GN10 and gene-dispersion scenarios
GD3 or GD6; (d) Polygene number GN30 and gene-dispersion
scenarios GD1 or GD4; (e) polygene number GN30 and gene-dis-
persion scenarios GD2 or GD5; (f) polygene number GN30 and
gene-dispersion scenarios GD3 or GD6. Labels for the heritability
values (horizontal axis) are multiplied by ten
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only for the cases where the population size was 100 or
more, and the major-gene heritability was more than 0.3
and the total heritability was 0.9, was the power to detect
the MX1 model greater than 50% (Fig. 3b and e). For the
case where P1 had the favourable major gene but none of
the favourable polygenes (GD3 and GD6), the power to
correctly detect the MX1 model was consistently low
(Fig. 3c and f). This suggests that the JSA had difficulty
in finding the correct model. Hence, in genetic analysis
for a quantitative trait using the JSA method, we should
avoid choosing such inbred lines as parents. This may be

Fig. 4a–f Power (measured as a %) of the joint segregation analy-
sis to correctly identify the MX2 genetic models for a range of
major-gene (hmg

2 ) and polygene (hpg
2 ) heritability values, different

gene-dispersion (GD) scenarios, a polygene number of 30 (GN30)
and experiments based on four population sizes (PS) of 30, 50,
100 and 200 individuals per generation: (a) Gene-dispersion sce-
nario GD1; (b) gene-dispersion scenario GD2; (c) Gene-disper-
sion scenario GD3; (d) gene-dispersion scenario GD4; (e) gene-
dispersion scenario GD5; (f) gene-dispersion scenario GD6. La-
bels for the heritability values (horizontal axis) are multiplied by
ten
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of particular significance in studies that aim to identify
useful QTLs for quantitative traits from wild relatives by
introgressing genomic regions into adapted backgrounds.

Power: the MX2 model

The power of the JSA to detect the MX2 model was 
the lowest among the six classes of genetic model de-
fined in Table 1 (Fig. 4). There were only a few cases
where the power was more than 50%. Among those
cases with higher power were the heritability combina-
tion 0.5_0.2_0.2 (case 5_2_2) for a population size of
200 and heritability combination 0.4_0.3_0.2 (case
4_3_2) for population sizes of 100 and 200. For gene-
dispersion scenario GD1, where the major genes and
polygenes are not dispersed between the parents, the
MX1 model was always selected in place of the MX2
model when the total heritability was more than 0.7, and
the PG model was always selected when the heritability
was less than 0.7. Consequently, for these scenarios the
power to detect the MX2 model was low (Fig. 4a).

For gene-dispersion scenario GD4, where the major
genes were dispersed and the polygenes were not dis-
persed between the parents, there was no case where the
power was more than 50%. The MX1 model was mostly
selected when the total heritability was more than 0.7,
and the PG model was mostly selected when the herita-
bility was lower (Fig. 4d). For the GD2 (Fig. 4b) and
GD5 (Fig. 4e) scenarios, any of the models could be se-
lected by the JSA and the correct MX2 model was only
rarely selected. Therefore, it would be difficult for the
correct model to be selected in practice when the genes
controlling a quantitative trait are mostly dispersed. For
the GD3 scenario (Fig. 4c), where P1 has the two favour-
able major genes but has none of the favourable poly-
genes, the PG model was mostly selected. For the GD6
scenario (Fig. 4e), where P1 has the first favourable ma-
jor gene but has none of the favourable polygenes, the
PG model was mostly selected for a heritability lower
than 0.7. The 1MG models or the 2MG models were se-
lected for higher heritabilities.

Estimation of the genetic parameters

The genetic parameters were accurately estimated for the
1MG, 2MG and PG models. For the MX1 model, the
distribution of the polygenes had a great effect on the ge-
netic parameter estimation, as it had for the power to de-
tect the model. For gene-dispersion scenarios GD1,
GD2, GD4 and GD5, the effect of the major gene was
reasonably well estimated (data not shown). However,
for the scenarios GD3 and GD6 the major-gene effect
was not reliably estimated, even for a high major-gene
heritability. The situation for the MX2 model was similar
to that for the MX1 model. For model Sets 2, 3, 4 and 5
(Table 1), where the real model was 2MG and the major-
gene heritability was 0.9, the power to select the correct

model was nearly 100% (Table 2). For these cases the
estimated additive effect of the first major gene (a1) was
close to its true value. In contrast, the additive effect of
the second major gene (a2) was always estimated to be
lower than its true value (Table 2). For model Sets 18, 19
and 20, where the major-gene heritability was 0.7 and
the power was greater than 90%, the additive effect of
the first major-gene was always overestimated and the
effect of the second was underestimated. For those cases
where the MX1 model was selected instead of the 2MG
model, the first major-gene effects were accurately esti-
mated; however, the effect of the second major gene was
partitioned into the polygene component of the model.
The situation was similar for other major-gene heritabili-
ties (data not shown).

For model Sets 7, 8 and 9, where the major-gene heri-
tability was 0.7 and the polygene heritability was 0.2
(Table 1), the additive effects of the first major gene
tended to be overestimated and the dominance effects
were underestimated (Table 2). Further, the estimates of
the second major-gene effects had a larger variance than
those of the first gene. For the cases where the MX1
model was selected, only the effects of the first major
gene were estimated, and the estimates of the effects
were higher than the true value (Table 2). The situation
was similar for the cases with higher polygene heritabili-
ty (data not shown).

Example data set: osmotic adjustment

The JSA was applied to examine the inheritance of os-
motic adjustment to water stress in three grain sorghum
crosses. Previous results, based on testing Mendelian
models using the mixture-model method of clustering
applied separately to each segregating generation
(Basnayake et al. 1995), indicated one recessive major
gene (oa1 for high osmotic adjustment) in cross C1
(Tx2813/QL27), one additive major gene (OA2 for 
high osmotic adjustment) in cross C2 (QL27/TAM422),
with both the major genes segregating in cross C3
(Tx2813/TAM422).

Based on the AIC values from the JSA for the six
classes of genetic model given in Table 1, the models
with the least AIC were the MX1 model for C1, the MX2
model for C2 and the MX1 model for C3 (Table 3). The
AIC for these models were considerably lower than those
for the models proposed by Basnayake et al. (1995) for
crosses C1 and C2 and slightly lower for cross C3. This
result indicates that the mixed one major-gene and poly-
gene inheritance model was the most appropriate model
for the C1 and C3 crosses, and the mixed two major-
gene and polygene inheritance model was the most ap-
propriate model for the C2 cross. Thus, the inclusion of
polygene effects in combination with the major genes
was a significant change from the previous inheritance
models for all three crosses. The dominance effect for
the major gene in C1 was negative, implying a recessive
major gene for high osmotic adjustment. This result was
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consistent with the proposed major-gene effect for the
oa1 gene reported by Basnayake et al. (1995). The domi-
nance effect of the first major gene in C2 was also nega-
tive, and suggested a partial recessive major gene. The
additive effect of the major gene in C3 was negative and
the dominance effect was small compared with the addi-
tive effect, implying an additive major gene, but the fe-
male parent did not possess the favourable allele. This
result was different from that reported by Basnayake et
al. (1995), who proposed a single additive major gene
OA2 possessed by TAM422 and segregating in C2, and
two major genes segregating in C3.

Based on the results of the JSA we considered the
possible major-gene genotypes for the three parents. If
A-a and B-b are used to represent the alleles of the major
genes in C1 and C3, where the upper-case allele has the
effect of increasing osmotic adjustment, the proposed ge-
notypes for Tx2813, TAM422 and QL27 were AAbb,

AABB and aabb, respectively. The average phenotypic
osmotic adjustment values for these genotypes were 1.58
MPa, 1.67 MPa and 0.77 MPa, respectively. The second
major gene in C2 should be the same as the major gene
segregating in C3, but its effect was not well estimated
in the analysis of C2, where the two genes were segre-
gating. This was consistent with the results from the
power analysis, i.e., the effect of the second major gene
in the MX2 model was always underestimated.

The results enable a revision of the osmotic-adjust-
ment gene notation and the major-gene inheritance mod-
els proposed by Basnayake et al. (1995). Since there is a
consistent trend for the high osmotic-adjustment alleles
to behave in a recessive manner we propose that oa1 and
oa2 represent the high osmotic-adjustment alleles for
both major genes and that OA1 and OA2 represent the al-
leles for low levels of osmotic adjustment. Here we use
the oa1-OA1 allele combination in place of the A-a allele

Table 2 Estimates of additive (a) and dominance (d) gene effects
for the first and second major genes for the 2MG and MX2 models
under gene-dispersion scenarios GD1, GN30 and a population size
of 100 from a range of model-experiment combinations (Set). The
true genetic-model effects are identified in bold followed in nor-

mal case by the estimates from the Joint Segregation Analysis 
for the correct model. For some Sets, estimates of genetic effects
for alternative genetic models are highlighted in italics. The power
of alternative models is displayed in parentheses in the Model 
column

Seta Modelb Powerc a1
d d1

d a2
e d2

e [a]f [d]f

(%)

2 2MG 1.03 1.03 0.37 0.37
2MG 99 1.11 (0.09) 0.94 (0.11) 0.29 (0.08) 0.35 (0.11)

3 2MG 0.97 0.97 0.52 0.52
2MG 100 1.09 (0.10) 0.80 (0.12) 0.38 (0.11) 0.44 (0.13)

4 2MG 0.89 0.89 0.63 0.63
2MG 100 1.09 (0.11) 0.67 (0.12) 0.44 (0.11) 0.50 (0.13)

5 2MG 0.82 0.82 0.73 0.73
2MG 100 1.06 (0.09) 0.58 (0.12) 0.48 (0.10) 0.55 (0.13)

18 2MG 0.89 0.89 0.37 0.37
2MG 91 0.94 (0.16) 0.79 (0.18) 0.31 (0.17) 0.39 (0.18)
MX1 (9) 0.83 (0.14) 0.96 (0.14) 0.45 (0.14) 0.32 (0.16)

19 2MG 0.82 0.82 0.52 0.52
2MG 95 0.90 (0.15) 0.63 (0.21) 0.42 (0.15) 0.52 (0.21)
MX1 (3) 0.87 (0.03) 0.89 (0.20) 0.47 (0.03) 0.44 (0.18)

20 2MG 0.73 0.73 0.63 0.63
2MG 95 0.89 (0.16) 0.57 (0.18) 0.46 (0.17) 0.58 (0.18)
MX1(3) 0.85 (0.03) 0.82 (0.11) 0.50 (0.03) 0.47 (0.22)

7 MX2 0.89 0.89 0.37 0.37 3.46 0.00
MX2 7 0.94 (0.09) 0.42 (0.12) 0.54 (0.21) 0.15 (0.30) 1.63 (0.18) 1.23 (0.21)
MX1 (93) 0.90 (0.16) 0.91 (0.22) 3.83 (0.17) 0.36 (0.23)

8 MX2 0.82 0.82 0.52 0.52 3.46 0.00
MX2 31 0.89 (0.13) 0.44 (0.22) 0.62 (0.17) 0.33 (0.21) 1.68 (0.17) 1.06 (0.24)
MX1 (67) 0.85 (0.16) 0.77 (0.24) 3.95 (0.16) 0.55 (0.25)

9 MX2 0.73 0.73 0.63 0.63 3.46 0.00
MX2 65 0.86 (0.12) 0.38 (0.23) 0.60 (0.21) 0.30 (0.25) 1.75 (0.19) 1.18 (0.20)
MX1 (29) 0.86 (0.18) 0.67 (0.28) 3.96 (0.18) 0.70 (0.26)

a Set: experiment set (see Table 1)
b Model: first model in each set indicates the actual model used for
the QU-GENE simulation. The following models in each set indi-
cate the models selected by the JSA
c Power indicates the percentage of times the model was selected
by the JSA

d a1, d1: additive and dominance effects of the major gene in MX1
or the first major gene in 2MG or MX2. Values in brackets are stan-
dard deviations of the parameter estimates
e a2, d2: additive and dominance effects of the second major gene
in 2MG or MX2
f [a], [d]: additive and dominance effect of the polygene system,
(see Appendix 1 and 2)
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combination used above for the first major gene, and 
the oa2-OA2 combination in place of the B-b allele com-
bination used above for the second major gene. There-
fore, the results of the JSA suggest that the osmotic-
adjustment major-gene genotypes of the three parents
should be designated as: Tx2813=oa1oa1OA2OA2;
TAM422=oa1oa1oa2oa2; and QL27=OA1OA1OA2OA2.

Considering the effects of the polygenes, the esti-
mates of the genetic parameters for C1 (Table 3) corre-
sponded to the gene-dispersion scenario GD1 of Set 6,
and those for C3 corresponded to scenario GD3 of Set 6.
The estimates of power for GD1 and GD3 of Set 6 for a
population size of 30 and a polygene number of 10 were
89% and 10%, respectively. Therefore, the results from
C1 might be more reliable than those from C3, due to the
possible influence of polygene dispersion in C3. The sit-
uation for C2 was consistent with scenario GD1 of Set 9,
i.e., the two major genes are not dispersed between the
parents and the major genes have similar effects (Table
3) and low polygene heritability. The power for this case
for a population size of 30 and polygene number of 10
was 34%. Therefore, the power for the proposed inherit-
ance models for C2 and C3 was low in both cases, which
suggests the need for further experimentation with a
larger population size to obtain a more reliable test of the
inheritance models for osmotic adjustment in these three
crosses.

Conclusions

The major results from the power analysis were: (1) The
power for the one major-gene model (1MG) was over
90% regardless of the population size and the major-
gene heritability. (2) The power for the two major gene
model (2MG) was over 60% for total major-gene herita-
bilities of 0.9 and 0.7 when the major genes were not
dispersed between the parents and was higher if the two
major genes made a similar contribution. For a major-
gene heritability of 0.5 and population sizes of 30 and
50, the power was lower than 40%; however, for popula-

tion sizes of 100 and 200 the power exceeded 60%. For
the lower heritability of 0.3, the power did not exceed
50% even for large population sizes. If major genes are
dispersed, large population sizes will be required to
reach the same power as the comparable scenario where
the genes are not dispersed. (3) The number of polygenes
(10 or 30) made little difference to the power of the test.
(4) The power for the polygene model (PG) was larger
than 50% in most cases if the polygenes were not dis-
persed between the parents. If the polygenes were highly
dispersed, the power decreased greatly, especially for
small population sizes and low levels of heritability. (5)
For the mixed one major-gene and polygene (MX1) in-
heritance model, the power exceeded 50% for polygene
heritability less than 0.4 when the major genes and poly-
genes were not dispersed between the parents. When the
polygene heritability exceeded 0.4, the PG model was
mostly selected in preference to the MX1 model and the
power of the test was low. The power was greater than
50% only for the cases where the population size was
100 or more and the major-gene heritability was more
than 0.3. For purposes of genetic analysis, the case
where the first parent has the favourable major gene but
has none of the favourable polygenes should be avoided,
as the power to detect the correct model will always be
low. (6) In general, the power for the mixed two major-
genes and polygene inheritance model (MX2) was low.
Either the MX1 or PG models were selected in prefer-
ence to the MX2 model. (7) Genetic parameters for the
1MG, MX1 and PG models were accurately estimated.
For the MX2 model, the genetic parameters were accu-
rately estimated where heritability was high. For low
heritability, the effect of the first major gene was over
estimated, and the effect of the second major gene was
underestimated.

In this paper we have concentrated on the common
genetic experiment structure based on the six basic gen-
erations that include the two parents, the F1 cross be-
tween the parents, the F2 generation produced by self-
pollination of the F1, and the two backcross generations
developed by crossing the F1 to each of the parents. A

Table 3 Selected genetic models (bold text) and previously re-
ported genetic models given by Basnayake et al. (1995) (normal
text) for osmotic adjustment in three grain sorghum crosses:

C1=Tx2813/QL27, C2=QL27/TAM422, C3=Tx2813/TAM422.
AIC and estimates of genetic effects for the genetic models

Cross Model AIC a1
a d1

a a2
b d2

b aac adc dac ddc [a]d [d]d

C1 MX1-A-AD −−92.19 0.40 −−0.13 −−0.03 −−0.24
1MG −38.64 0.39 −0.20

C2 MX2-ADI-AD −−87.46 0.45 −−0.19 −−0.02 −−0.11 0.08 −−0.05 −−0.18 0.18 2.78 0.29
1MG −36.44 0.43 −0.11

C3 MX1-A-AD −−142.99 −−0.34 0.02 0.31 −−0.39
2MG −131.05 −0.09 −0.03 0.04 −0.12 –0.03 0.08 0.05 −0.30

a a1, d1: additive and dominance effects of the major gene for the
MX1 model or the first major gene for the MX2 model
b a2, d2: additive and dominance effects of the second major gene
for the MX2 model

c aa, ad, da, dd: additive×additive, additive×dominance, domi-
nance×additive, dominance×dominance epistatic effects between
the two major genes
d [a], [d]: additive and dominance effects of the polygene system,
see Appendix 1 and 2
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similar approach can also be applied to genetic experi-
ments based on other combinations of generations.
While a limited set of genetic models was considered in
this paper, the JSA approach can also be applied to a
wider range of more-complex genetic models. Applica-
tion of the JSA methodology to a data set that was gener-
ated to investigate the inheritance of osmotic adjustment
in three grain sorghum crosses, enabled a useful revision
of the proposed inheritance models in the three crosses
studied.

Appendix 1: parameters and assumptions used 
in the JSA method

Supposing the genetic data are from two homogeneous
and homozygous parents (P1 and P2), the F1 hybrid be-
tween the parents, the F2 hybrid by self-pollination of the
F1, and the two backcross generations (B1 and B2), then
some underlying assumptions are: (1) the variations
within P1, F1 and P2 are the same and can be used to
measure the environmental variation σe

2, (2) polygene
effects and environmental effects are all normally dis-
tributed, and (3) there is no linkage between the major
gene and the polygene and no epistasis. Under these as-
sumptions, sets of parameters can be defined for the dif-
ferent inheritance models. For example, with the mixed
one major-gene and polygene inheritance model (MX1),
P1 (AA), F1 (Aa) and P2 (aa) are all normally distributed
with different means but the same variance, and B1, B2
and F2 are normal mixtures, which can be represented as:

P1~N(µ1, σ2
e), F1~N(µ2,  σ2

e), P2~N(µ3,  σ2
e),

B1~(1/2)N(µ41, σ2
4)+(1/2)N(µ42, σ2

4), 
B2~(1/2)N(µ51, σ2

5)+(1/2)N(µ52, σ2
5),

F2~(1/4)N(µ61, σ2
6)+(1/2)N(µ62, σ2

6)+(1/4)N(µ63, σ2
6),

where µ1, µ2, and µ3 are the means of P1, F1 and P2, re-
spectively, µ41 and µ42 are the means of the two compo-
nents in B1, µ51 and µ52 are the means of the two compo-
nents in B2, and µ61, µ62 and µ63 are the means of the
three components in F2, σ2

e is the environmental vari-
ance, σ2

4, σ2
5 and σ2

6 (both polygene variation and envi-
ronmental variation are included in these variances) are
the common variances of components in B1, B2 and F2,
respectively. The likelihood function can therefore be
built and maximum-likelihood estimates can be found
through the EM algorithm (McLachlan and Basford
1988). It should be pointed out that the different models,
i.e., NULL, 1MG, 2MG, MX1 and MX2, have different
sets of parameters. Here, only an example for MX1 is
presented. Major-gene effects, i.e., a1, d1, a2, and d2, can
therefore be estimated from the equations between com-
ponent means and gene effects (Gai and Wang 1998).
JSA cannot estimate effects of individual polygenes;
however, additive and dominance effects ([a] and [d]) 
of the polygene system can still be estimated (Tables 2
and 3)

Appendix 2: construction of genetic effects 
in the simulation experiment

Construction of genetic models in the QU-GENE engine
requires the effects of each individual gene to be specified.
For each class of genetic model considered in the experi-
ment (1MG, 2MG, MX1, MX2, PG, NULL), individual
gene effects were constructed, noting that the numbers of
genes with a positive value differs among the six classes of
the genetic model. Table A1 shows the individual gene ef-
fects for the six classes of the genetic model for some ex-
ample sets. Values for each gene are given in terms of the
m, a, d (midpoint, additive, dominance) model and for the
three possible allelic combinations of each gene (aa, Aa,
AA; assuming a and A are the two alleles). For example,
for the 1MG model and a heritability value of 0.9, we have
a single positive gene with m=0.00, a=1.10 and d=1.10 (in
terms of the m, a, d model). This results in the values −
1.10, 1.10 and 1.10 for allelic combinations aa, Aa and
AA, respectively. The m, a, d values were obtained using
the appropriate equations presented in the Materials and
methods section. That is, for the 1MG model, we have 

Because JSA can only estimate the additive and domi-
nance effects of the polygene system, [a] and [d] in 
Table 2 are the confounding effects from all polygenes.
Polygene dispersion affects the values of [a] and [d]. For
example, for Set 16, [a] are 4.2, 0, and −4.2 for GD1,
GD2 and GD3, respectively

h h a d a dmg
2

1
2

1
2

1
2

1 10 9 1
2

1
4 1 10 1 10= = = + = =. , . . .where and

Table A1 The m, a, d (midpoint, additive dominance) values and
the genetic values of the three possible allelic combinations (aa,
Aa, AA; assuming a and A are the two alleles) for each gene de-
fined in six classes of the genetic model. Genes 1 and 2 refers to
the two major genes and genes 3–12 refers to the polygenes. Set
numbers correspond to those used in Table 1

Set Model Gene m, a, d Parameters Allelic combination

mi ai di aa Aa AA

1 1MG 1 0.00 1.10 1.10 −1.10 1.10 1.10
2 0.00 0.00 0.00 0.00 0.00 0.00
3–12 0.00 0.00 0.00 0.00 0.00 0.00

2 2MG 1 0.00 1.03 1.03 −1.03 1.03 1.03
2 0.00 0.37 0.37 −0.37 0.37 0.37
3–12 0.00 0.00 0.00 0.00 0.00 0.00

6 MX1 1 0.00 0.97 0.97 −0.97 0.97 0.97
2 0.00 0.00 0.00 0.00 0.00 0.00
3–12 0.00 0.20 0.00 −0.20 0.00 0.20

7 MX2 1 0.00 0.89 0.89 −0.89 0.89 0.89
2 0.00 0.37 0.37 −0.37 0.37 0.37
3–12 0.00 0.20 0.00 −0.20 0.00 0.20

16 PG 1 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00
3–12 0.00 0.42 0.42 −0.42 0.00 0.42

41 NULL 1 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00
3–12 0.00 0.00 0.00 0.00 0.00 0.00
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